КРИТЕРИИ И МЕТОДИКА ОЦЕНИВАНИЯ ВЫПОЛНЕНИЯ ОЛИМПИАДНЫХ ЗАДАНИЙ РЕГИОНАЛЬНОГО ЭТАПА ПО ХИМИИ С УКАЗАНИЕМ МАКСИМАЛЬНО ВОЗМОЖНОГО КОЛИЧЕСТВА БАЛЛОВ ЗА КАЖДОЕ ЗАДАНИЕ И ОБЩЕГО КОЛИЧЕСТВА МАКСИМАЛЬНО ВОЗМОЖНЫХ БАЛЛОВ ПО ИТОГАМ ВЫПОЛНЕНИЯ ВСЕХ ЗАДАНИЙ

для жюри

1 тур

Теоретический тур

Девятый класс

Решение задачи 9-1 (автор: Курамшин Б.К.)

1. Исходя из закона сохранения массы, масса неизвестного ядра равна 235. А из закона сохранения заряда, заряд ядра равен 92 (это уран):

$$^{239}_{94}\,\mathrm{Pu} o ^{235}_{92}\mathrm{U} + ^{4}_{2}\,\mathrm{He} + 506.0\,\Gamma$$
Дж/ моль

2. Объём цилиндра равен $V = \pi r^2 l = 3.14 \cdot 2^2 \cdot 15 = 188.4 \text{ см}^3$

Масса плутония равна $m = V \rho = 188.4 \cdot 19.84 = 3737.856$ г

Количество плутония-239: n = 3737.856 / 239 = 15.640 моль

Значит, каждую секунду в цилиндре распадается

$$5.48 \cdot 10^{11} \cdot 15.640 = 8.570 \cdot 10^{12}$$
 атомов плутония.

Количество плутония, распадающегося каждую секунду:

$$n_0 = N/N_{\rm A} = 1.424 \cdot 10^{-11}$$
 моль.

Теплота, выделяющаяся каждую секунду $Q_0 = 506 \cdot 10^9 \cdot 1.424 \cdot 10^{-11} = 7.20$ Дж.

3. Теплота, необходимая для нагрева воды:

$$Q = cm(T_{\text{кип}} - T_0) = 4.184 \cdot 2000 \cdot (100 - 20) = 669440 \ \text{Дж}$$

Время в секундах найдем, используя теплоту Q_0 , выделяющуюся в секунду, не забыв учесть, что только 90% теплоты идет на нагрев воды.

$$Q=0.9Q_0 t$$
 $t=Q/0.9Q_0=669440 \ / \ (0.9\cdot7.20)=103309 \ \mathrm{c}=\mathbf{28.7} \ \mathbf{q}$

4. Сложим удвоенную обратную реакцию (1), одну реакцию (2), удвоенную реакцию (3) и удвоенную обратную реакцию (4):

$$4H_{(r.)} + 2O_{(r.)} + 2 H_2O_{(r.)} + 2 OH_{(r.)} \rightarrow 2H_{2(r.)} + O_{2(r.)} + 2H_{(r.)} + 2OH_{(r.)} + 2H_{(r.)} + 2O_{(r.)}$$

После сокращений:

$$2 \text{ H}_2\text{O}_{(\Gamma)} \rightarrow 2\text{H}_{2(\Gamma)} + \text{O}_{2(\Gamma)}$$
 $\Delta_r H = -2\Delta_r H_1 + \Delta_r H_2 + 2\Delta_r H_3 - 2\Delta_r H_4$

Разложению подвергается жидкая вода, поэтому добавим дважды «реакцию» испарения воды $(H_2O_{(\kappa.)} \to H_2O_{(r.)})$:

$$2 H_2O_{(r)} + 2H_2O_{(x_r)} \rightarrow 2H_{2(r)} + O_{2(r)} + 2H_2O_{(r)}$$

После сокращений:

$$2H_2O_{(ж.)} \rightarrow 2H_{2(r.)} + O_{2(r.)}$$
 $\Delta_r H = -2\Delta_r H_1 + \Delta_r H_2 + 2\Delta_r H_3 - 2\Delta_r H_4 + 2\Delta H_{ucn} =$ =+571.8 кДж/моль

5. Каждую секунду распадается $1.424\cdot 10^{-11}$ моль плутония, значит, образуется такое же количество гелия.

За час выделится $n(\text{He}) = 1.424 \cdot 10^{-11} \text{ моль} \cdot 3600 = 5.13 \cdot 10^{-8} \text{ моль}$ гелия.

Каждый час $7.2 \cdot 0.9 \cdot 3600 = 23328$ Дж теплоты идёт на испарение воды, значит, испарится $23328/44000 = \mathbf{0.53}$ моль воды.

Наконец, каждый час $7.2 \cdot 0.03 \cdot 3600 = 777.6$ Дж идёт на радиолиз воды. На разложение 2 моль воды требуется 571800 Дж, значит, количество разложившейся воды за час составит:

$$n(H_2O) = 777.6 \cdot 2 / 571800 = 2.72 \cdot 10^{-3}$$
 моль

Значит, выделится:

$$n({
m H}_2)={f 2.72\cdot 10^{-3}}$$
 моль водорода;
$$n({
m O}_2)=0.5\cdot 2.72\cdot 10^{-3}={f 1.36\cdot 10^{-3}}$$
 моль кислорода.

1	Верное заполнение пропусков – 1.5 балла	1560000
	(за каждое неверно заполненное «» - минус 0.5 балла, в сумме не менее 0 б.)	1.5 балла
2	Расчет теплоты за секунду – 4 баллов (Верно рассчитан объём, но дальнейшие значения неверны –	
	0.5 балла;	
	Верно рассчитана масса, но дальнейшие значения неверны –	
	1 балл;	
	Верно рассчитано количество Pu в цилиндре, но дальнейшие значения неверны – 2 балла;	
	Верно рассчитано число атомов, распадающихся в секунду, но дальнейшие значение неверны – 2.5 балла;	
	Верно рассчитано число моль Ри, распадающегося в секунду,	
	но значение теплоты неверно – 3 балла	
	Все иные случаи – 0 баллов)	
3	Верный расчет времени – 1.5 балла	
	(Верный расчёт для неверного значения из п.1 – 1.5 балла	
	Верно рассчитано количество необходимой для нагрева	1.5 балла
	теплоты, но неверно рассчитано время – 1 балл	
	Все иные случаи – 0 баллов)	

4	Верный расчёт энтальпии реакции — 4 балла (Верное итоговое выражение и арифметическая ошибка — 3 балла, Верное выражение для реакции с газообразной H_2O , но в дальнейшем не учтено испарение воды — 2 балла Расчет проведен для реакции с коэффициентом 1 перед H_2O —	4 балла
	ещё минус 1 балл;	
	Все иные случаи – 0 баллов)	
5	Верный расчет количества гелия — 1 балл Верный расчет количества паров воды — 1 балл Верный расчет количества водорода и кислорода — по 1 баллу (Если какое-либо количество не пересчитано с 1 с на 1 ч и ответ отличается в 3600 раз от верного — минус 1 балл за каждый такой случай; Если рассчитано количество теплоты, идущей на процесс испарения или радиолиза, но не рассчитано количество соответствующего вещества — половина от возможного количества баллов)	4 балла
	ИТОГО	: 15 баллов

Решение задачи 9-2 (авторы: Чумерин Д.С., Прасолов П.В.)

1) Найдем молярную массу газа С:

$$M(\mathbf{C}) = \rho \cdot V_m = 1.964 \frac{\Gamma}{\pi} \cdot 22.4 \frac{\pi}{\text{моль}} \approx 44 \frac{\Gamma}{\text{моль}}$$

что соответствует оксиду углерода(IV), оксиду азота(I) или пропану. Далее этот газ поглощается раствором гидроксида бария и даёт с ним осадок. Можно сделать вывод о том, что газ **C** – оксид углерода(IV) (или углекислый газ). Таким образом, в состав соединения **A** входит карбонат-ион. Количество можем определить исходя из массы осадка карбоната бария:

$$n({\rm CO_2}) = \frac{m(BaCO_3)}{M(BaCO_3)} = \frac{5.920\ {
m \Gamma}}{197.34\ ^{\Gamma}/{
m MOJB}} = 0.030\ {
m моль}$$

После охлаждения газовой смеси до комнатной температуры масса уменьшилась на 0.27 г. Можно предположить, что изменение массы — масса воды. Найдем количество сконденсировавшейся воды

$$n({
m H_2O}) = {m({
m H_2O}) \over M({
m H_2O})} = {0.270 \ {
m \Gamma} \over 18 \ {
m \Gamma/_{MOЛЬ}}} = 0.015 \ {
m моль}$$

Найдем массовую долю металла **X** в соединении **A**

$$\omega(\mathbf{X}) = \frac{m(\mathbf{X})}{m(\mathbf{A})} \cdot 100 \% = \frac{9.324 \text{ r}}{11.634 \text{ r}} \cdot 100 \% = 80.14 \%$$

Найдем количество кислорода в соединении А

$$m(H) = n(H) \cdot M(H) = 2n(H_2O) \cdot M(H) = 2 \cdot 0.015$$
 моль $\cdot 1 \frac{\Gamma}{\text{моль}} = 0.030$ г $m(C) = n(C) \cdot M(C) = n(CO_2) \cdot M(C) = 0.03$ моль $\cdot 12 \frac{\Gamma}{\text{моль}} = 0.360$ г $m(O) = m(A) - m(X) - m(H) - m(C) = 1.634 - 9.324$ г $- 0.030$ г $- 0.360$ г $= 1.92$ г

$$n(0) = \frac{m(0)}{M(0)} = \frac{1.92 \text{ г}}{16 \Gamma/_{\text{МОЛЬ}}} = 0.12 \text{ моль}$$

Для соединения **A** состава $\mathbf{X}_x \mathbf{H}_y \mathbf{C}_z \mathbf{O}_p$ найдем соотношение водорода, углерода и кислорода

$$y: z: p = n(H): n(C): n(O) = 0.03: 0.03: 0.12 = 1:1:4$$

Найдем молярную массу металла **X**, предварительно вычислив массовую долю кислорода в соединении **A**.

$$\omega(0) = \frac{m(0)}{m(\mathbf{A})} \cdot 100 \% = \frac{1.92 \text{ r}}{11.625 \text{ r}} \cdot 100 \% = 16.516 \%$$

Молярная масса соединения А в общем виде через кислород

$$M(\mathbf{A}) = \frac{16 \cdot 4k}{0.16516} = 387.5 \cdot k$$

Молярная масса соединения А в общем виде через металл

$$M(\mathbf{A}) = \frac{A_r(\mathbf{X}) \cdot x}{0.8013}$$

где x — число атомов металла X в соединении A

Объединим два полученных уравнения

$$\frac{A_r(\mathbf{X}) \cdot x}{0.8013} = 387.5k \implies A_r(\mathbf{X}) = \frac{387.5k \cdot 0.8013}{x} = \frac{310.5k}{x}$$

k x	1	2	3
1	310.5		
2	155.25		
3	103.5	207	
4	77.625	155.25	232.875

Перебирая варианты, подходящим получается вариант при k=2 и x=3. Следовательно, металл **X** – свинец (Pb).

Определим состав соединения **A** ($Pb_xH_yC_zO_p$).

$$x : y : z : p = 3 : 2 : 2 : 8 \text{ Pb}_3(OH)_2(CO_3)_2$$

Другой метод рассуждений, также позволит получить правильный ответ. Мы определили соотношение углерода, кислорода и водорода 1:4:1, что может соответствовать анионам (OH)(CO₃), т.е. состав **A** может быть $\mathbf{M}^{\mathbf{I}}_{3}$ (OH)(CO₃), $\mathbf{M}^{\mathbf{II}}_{3}$ (OH)₂(CO₃)₂ или $\mathbf{M}^{\mathbf{III}}$ (OH)(CO₃). Вычисли молярную массу **M**:

$$A_r(\mathbf{M^{II}}) = \frac{m(X)}{n(C) \cdot 3} = \frac{9.315 \Gamma}{0.03 \text{моль} \cdot 3} = 103.5 \Gamma/_{\text{МОЛЬ}}$$
 $A_r(\mathbf{M^{II}}) = \frac{m(X)}{n(C) \cdot 1.5} = \frac{9.315 \Gamma}{0.03 \text{моль} \cdot 1.5} = \mathbf{207} \Gamma/_{\text{МОЛЬ}} => \mathbf{Pb}$
 $A_r(\mathbf{M^{III}}) = \frac{m(X)}{n(C)} = \frac{9.315 \Gamma}{0.03 \text{моль}} = 310.5 \Gamma/_{\text{МОЛЬ}}$

Найдем молярную массу ${f G}$, используя уравнение Менделеева-Клапейрона.

$$M(\mathbf{G}) = \frac{RT}{p}\rho(\mathbf{G}) = \frac{8,314 \frac{\text{Дж}}{\text{моль·К}} \cdot 298 \text{ K}}{99.7 \text{ кПа}} 2.578 \frac{\Gamma}{\pi} \approx 64 \, \Gamma/_{\text{МОЛЬ}}$$

Следовательно, **G** – сернистый газ (SO_2) , а **L** – сульфид свинца.

Исходя из описания, можно предположить, что вещество ${\bf D}$ – пероксид водорода (${\rm H_2O_2}$). Следовательно, ${\bf E}$ – вода (${\rm H_2O}$) и ${\bf F}$ – кислород (${\rm O_2}$). А при «реставрации» происходит окисление сульфида.

2) Запишем уравнения описанных реакций:

$$Pb_3(OH)_2(CO_3)_2 \xrightarrow{t^{\circ}C} 3PbO + 2CO_2 + H_2O$$
 (1)

$$3PbO + 2NH_3 \xrightarrow{t^{\circ}C} 3Pb + N_2 + 3H_2O$$
 (2)

$$2H_2O_2 = 2H_2O + O_2 \tag{3}$$

3) Потемнение красок обусловлено образованием черного сульфида свинца(II) (PbS) под действием малых, но всегда присутствующих в воздухе, концентраций сероводорода.

Запишем уравнение реакции.

$$Pb_3(OH)_2(CO_3)_2 + 3H_2S = 3PbS + 2CO_2 + 4H_2O$$
(4)

При действии на сульфид свинца(II) пероксидом водорода образуется

сульфат свинца(II) ($PbSO_4$) — соединение белого цвета, что «восстанавливает» исходную окраску свинцовых белил.

Запишем уравнение реакции.

$$PbS + 4H_2O_2 = PbSO_4 + 4H_2O (5)$$

4) При прокаливании на воздухе $Pb_3(CO_3)_2(OH)_2$ свинец окисляется кислородом до свинцового сурика – оксида свинца(II,IV) (Pb_3O_4).

Запишем уравнение реакции.

$$2Pb_3(OH)_2(CO_3)_2 + O_2 = 2Pb_3O_4 + 4CO_2 + 2H_2O$$
 (6)

5) Вещество, отвечающее за жёлтую окраску, реагирует с перекисью водорода как и сульфид свинца. Можно предположить, что соединение \mathbf{K} – сульфид другого металла. В общем виде сульфид можно записать как M_2S_n .

Найдем относительную атомную массу металла.

$$\omega(S) = \frac{A_r(S) \cdot n}{M_r(K)} \Longrightarrow A_r(S) \cdot n = M_r(K) \cdot \omega(S)$$
$$= (2A_r(Me) + A_r(S) \cdot n) \cdot 0.22222$$

Преобразуем полученное уравнение.

$$A_r(S) \cdot n = (2A_r(Me) + A_r(S) \cdot n) \cdot 0.22222$$

 $32n = (2A_r(Me) + 32n) \cdot 0.22222$
 $0,44444A_r(Me) = 24.88896n$

$$A_r(Me) = 56n$$

Перебирая варианты, подходящим получается вариант при n=2. Следовательно, металл — кадмий (Cd). Вариант с железом не подходит, так как в таком случае формула соединения **K** должна была бы быть Fe_2S .

Следовательно, соединение **K** – сульфид кадмия (CdS).

1	За соединения A – G и L по 1 баллу	8 баллов
	nри o т c ут c т b ии o б o сн o в a ния $ 0$ б a лл o в	
2	Уравнения 1 - 3 – по 1 баллу	3 балла
3	Реакции 4 и 5 по 1 баллу	2 балла
4	Верно написано равнение химической реакции	1 балл
5	Верно определено соединение К.	1 балл
	ОТОТИ	15 баллов

Решение задачи 9-3 (автор: Серяков С.А.)

1. Вещества X1 и Y1 газообразные, а продукты их окисления азотной кислотой являются кислородсодержащими кислотами, поскольку титруются щёлочью. Можно предположить, что элементы, входящие в состав X1 и Y1 являются неметаллами. Судя по схеме 3, жидким продуктом реакции с азотной кислотой является вода $\mathbf{F} = H_2O$, а газообразным $\mathbf{B} = NO_2$. Следовательно $\mathbf{X}\mathbf{1}$ и Y1 содержит водород, поскольку одним из продуктов их сжигания является вода. Речь идёт о водородных соединениях неметаллов (значит $\mathbf{A} = \mathbf{H}_2$), зашифрованных в качестве X1 и Y1. Оценим интервал молярных масс для X1 и **Y1** из плотности смеси: $M_{\text{смеси}} = \rho \cdot 22.4 \approx 34$ г/моль, это значит, что по крайней мере один из элементов имеет атомную массу менее 34 и образует газообразное при н.у. водородное соединение. Такими неметаллами являются: B, C, N, F, Si, Р, S. Азот и фтор не дают твердого остатка при нагревании водородных соединений. Различные продукты окисления (как по агрегатному состоянию, так и по составу) азотной кислотой и сжигания на воздухе среди оставшихся элементов даёт только сера, а продукт окисления азотной кислотой, способный титроваться щёлочью среди оставшихся элементов приведенного ряда даёт лишь фосфор. Вспомним что H₂S и PH₃ имеют одинаковые молярные массы (34 г/моль) и расшифруем остальные вещества. **X1** = H₂S и **Y1** = PH₃, продукты их разложения X2 = S или S_8 , Y2 = P или P_4 . При сжигании сероводорода на воздухе образуется $X3 = SO_2$, а в случае фосфина $Y3 = HPO_3$, при окислении сероводорода азотной кислотой образуется $X4 = H_2SO_4$, а при окислении фосфина $Y4 = H_3PO_4$. Осадки с одинаковыми молярными массами, гипс $X5 = CaSO_4 \cdot 2H_2O$ полученные схеме 3 ЭТО И преципитат $Y5 = CaHPO_4 \cdot 2H_2O$. По условию осадок отличается от продукта его прокаливания, поэтому в случае соединения серы речь идёт именно о кристаллогидрате, а не о безводной соли. Соответствующие средние соли имеют состав: $X6 = CaSO_4$ и $Y6 = Ca_2P_2O_7$. Разница в молярных массах в расчёте на один атом кальция или фосфора составляет ~9г/моль, что соответствует 6.6% от молярной массы CaSO₄.

Определим количество атомов каждого типа, приходящееся на

элементарную ячейку **X7**. Позиции в серединах рёбер имеют кратность ${}^{1}\!4$, в центрах граней ${}^{1}\!2$, всего рёбер у куба 12, а граней 6, значит число «лёгких» атомов n = $12 \cdot {}^{1}\!4 + 6 \cdot {}^{1}\!2 = 6$ шт. Позиции, целиком расположенные внутри ячейки имеют кратность 1, их в данной структуре 1 (в центре), а расположенные в вершинах позиции имеют кратность 1/8, их в данной ячейке 8, значит «тяжёлых» атомов m = $1 \cdot 1 + 8 \cdot 1/8 = 2$ шт. m : n = 2 : 6 = 1 : 3. Т.е. состав вещества **X7** это H_3 S. **X7** сохраняет сверхпроводящие свойства вплоть до 203 К под давлением около 1.5 млн. атмосфер, научный прорыв 2015 года привел к тому что буквально за 2020-2021 годы появилось несколько сообщений о достижении сверхпроводимости при комнатной температуре для различных гидридов и исследовании свойств металлического водорода при сверхвысоком давлении.

Найдём молярную массу **Y7** из плотности: $M(\mathbf{Y7}) = \frac{\rho RT}{p} = \frac{9.05 \cdot 8.314 \cdot 175}{101.3} = 130 \, ^{\Gamma}/_{\text{МОЛЬ}}$. Для формулы $P_x H_y$ молярная масса равна 31x + y = 130, откуда x = 4, y = 6, т.е. $\mathbf{Y7} = P_4 H_6$. Интересной особенностью **Y7** является равновесие между линейной и разветвлённой формами.

X1	X2	X3	X4		X5		X6	X 7
H_2S	\mathbf{S} или \mathbf{S}_8	SO_2	H ₂ SO ₄ CaSO ₄		CaSO ₄ ·2	$2H_2O$	CaSO ₄	H_3S
Y1	Y2	Y3	Y4		Y5	7	Y6	Y7
PH_3	Р или Р4	HPO ₃	H_3PO_4	CaHI	$PO_4 \cdot 2H_2O$	Ca ₂	P_2O_7	P_4H_6

². Наковальни для синтеза при сверхвысоком давлении изготавливают из *алмаз*а.

1	Вещества Х1-Х7 и У1-У7 по 1 баллу	14 баллов
2	Указан алмаз в качестве материала наковальни	1 балл
	ОТОТИ	15 баллов

Решение задачи 9-4 (автор: Седов И.А.)

- **1.** Хорошо известно, что металлы вступают в реакцию с кислотами с образованием газов. Образование трех разных газов, состоящих из одной и той же пары элементов, говорит в пользу того, что речь идет об азотной кислоте HNO_3 (**Y**) и оксидах азота $-NO_2$, NO и N_2O (N_2O_3 в описанных условиях разлагается).
- **2.** Запишем уравнения реакций произвольного металла **M** с азотной кислотой с образованием каждого из трех газов:

$$M + 2n HNO_3 = M(NO_3)_n + nNO_2 + nH_2O$$

$$3 M + 4n HNO_3 = 3 M(NO_3)_n + nNO + 2n H_2O$$

$$8 M + 10n HNO_3 = 8 M(NO_3)_n + nN_2O + 5n H_2O$$

Во всех трех опытах использовалось одинаковое количество металла, а значит, должна принимать одинаковые значения следующая величина (количество эквивалентов металла):

$$nv(M) = v(NO_2) + 3v(NO) + 8v(N_2O) = \frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$$

Теперь можно определить, под какой буквой скрывается каждый из газов. Заметим, что масса газа ${\bf B}$ сильно меняется (по сравнению с другими двумя газами) от второго эксперимента к третьему. Значит, ему соответствует минимальный коэффициент в вышеприведенной сумме, т.е. ${\bf B}-{\rm NO}_2$. Чтобы определить ${\bf A}$ и ${\bf C}$, вычислим значения nv(M) для обоих вариантов отнесения:

1)
$$A - N_2O$$
, $C - NO$:

	$\frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$, ммоль
Эксперимент 1	31.6
Эксперимент 2	31.8
Эксперимент 3	31.6

2)
$$A - NO, C - N_2O$$
:

	$\frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$, ммоль
Эксперимент 1	45.6
Эксперимент 2	50.5
Эксперимент 3	48.3

Очевидно, что результаты сходятся лучше в первом случае. Таким образом, ${\bf A}-{\rm N}_2{\rm O},\,{\bf C}-{\rm NO}.$

- **3**. Как известно, концентрированная азотная кислота преимущественно восстанавливается до NO₂, а с понижением ее концентрации выход NO₂ падает. Поэтому эксперимент 3 соответствует минимальному количеству воды, а эксперимент 2 максимальному.
- 4. Из вышеприведенной таблицы следует, что было взято примерно 31.7 ммоль эквивалентов металла. Это соответствует молярной массе эквивалента1000 / 31.7 = 31.55 г/моль, что ближе всего к эквиваленту меди при n = 2 (31.77 г/моль).

Уравнения реакций:

$$Cu + 4HNO_3 = Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

 $3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO + 4H_2O$

$$4Cu + 10HNO_3 = 4Cu(NO_3)_2 + N_2O + 5H_2O$$

5. Эти газы – азот N_2 и водород H_2 .

1	За каждый элемент – 1 балл	3 балла
1	За формулу Ү – 1 балл	
	По 2 балла за каждую формулу А, В и С при наличии	6 баллов
2	расчёта	
	Без расчёта – 1 балл	
3	Выбор опыта с минимальным и максимальным	1 балл
3	содержанием воды	
4	Определение металла – 1 балл	4 балла
4	Уравнения реакций ($1 - 3$) по 1 баллу	
5	Газы D и E по 0.5 балла	1 балл
	ИТОГО	15 баллов

Решение задачи 9-5 (автор: Дмитриев Д.Н., Яшкин С.Н.)

1. Газ Д с запахом «тухлых яиц» - сероводород (H_2S) ;

Продуктами сгорания сероводорода на воздухе являются эквимолярные количества воды $H_2O(\mathcal{K})$ и сернистого газа $SO_2(3)(M_r(\mathcal{K}) < M_r(3))$;

Так как вещество \mathbf{F} при гидролизе (пахнет на воздухе веществом \mathbf{J}) образует сероводород (\mathbf{J}) и вещество \mathbf{F} бинарное, то \mathbf{F} – сульфид;

р-ция 5:
$$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$$
;

$$M_{r \text{ (mix)}}(Д) = M_{r}(H_{2}O) \cdot N(H_{2}O) + M_{r}(SO_{2}) \cdot N(SO_{2}) = 18 \cdot 0.5 + 64 \cdot 0.5 = 41 \text{ г/моль};$$
 $n(\text{газ. продуктов}) = 2 \text{ моль, тогда для реакции 6}$

$$M_{r \text{ (mix)}}(Б) = 1.398 \cdot M_{r \text{ (mix)}}(Д) = 57.318 \text{ г/моль;}$$

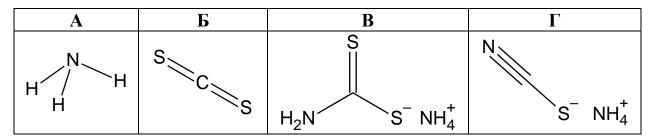
n(газ. продуктов) = 3 моль, тогда возможны два случая:

- 1) $N(SO_2)=1/3$, тогда $64/3+M_r(\mathbf{M})\cdot 2/3=57.318$; $M_r(\mathbf{M})=54$ г/моль;
- 2) $N(SO_2)=2/3$, тогда $64.2/3+M_r(\mathbf{H})/3=57.318$; $M_r(\mathbf{H})=44$ г/моль.

Информация о строении аналогичном строению **Б** (неполярное) и его молекулярной массе равной 44 г/моль, позволяет сказать, что $\mathbf{H} - \mathbf{CO}_2$.

Тогда **Б** - CS_2 , так имеет неполярное строение и в реакции 6 $n(SO_2):n(CO_2)=2:1$.

Найдём отношение молекулярных масс Б и А:


 $M_r(\mathbf{B})/M_r(\mathbf{A}) = 6,4706, \ M_r(\mathbf{B})/M_r(\mathbf{G}) = 1,4474, \$ откуда $M_r(\mathbf{G})/M_r(\mathbf{A}) = 4,4706;$ $M_r(\mathbf{A}) = M_r(\mathbf{G})/4,4706 = 76/4,4706 = 17$ г/моль. Низкая температура кипения и молекулярная масса указывают на аммиак. \mathbf{A} -NH₃.

$$M_r(\mathbf{B})/M_r(\mathbf{A}) = 6,4706, M_r(\mathbf{B}) = 6,4706 \cdot 17 = 110$$
 г/моль.

Определим состав вещества **B**. Пусть на образование 1 моль **B** (*реакция 2*) расходуется х моль **A** и у моль **Б**, тогда $17 \cdot x + 76 \cdot y = 110$. При x = 2 и y = 1 равенство выполняется. Следовательно, состав вещества **B** можно записать как $(NH_3)_2(CS_2)$.

Поскольку при разложении **B** образуется эквимолярная смесь веществ Γ и \mathcal{I} , то очевидно, что состав Γ и \mathbf{E} - N_2H_4CS . Этому составу соответствует роданид аммония (NH₄SCN, Γ , ионное соединение) и тиомочевина (вещество молекулярного строения (NH₂)₂CS, \mathbf{E}).

Итого: $\mathbf{A} - \mathrm{NH}_3$; $\mathbf{F} - \mathrm{CS}_2$; $\mathbf{B} - \mathrm{NH}_2\mathrm{CS}_2\mathrm{NH}_4$; $\mathbf{\Gamma} - \mathrm{NH}_4\mathrm{SCN}$; $\mathbf{\mathcal{I}} - \mathrm{H}_2\mathrm{S}$; $\mathbf{E} - \mathrm{CS}(\mathrm{NH}_2)_2$; $\mathbf{\mathcal{K}} - \mathrm{H}_2\mathrm{O}$; $\mathbf{3} - \mathrm{SO}_2$; $\mathbf{\mathcal{I}} - \mathrm{CO}_2$.

Д	E	Ж	3	И
H_S_H	S C NH ₂	H_O_H	o s==o	0//0

2. Уравнение *реакций 1-6*:

- 1) $4NH_3 + 2CS_2 \rightarrow NH_2CS_2NH_4 + NH_4SCN + H_2S$;
- 2) $2NH_3 + CS_2 \rightarrow NH_2CS_2NH_4$;
- 3) $NH_2CS_2NH_4 \rightarrow NH_4SCN + H_2S$;
- 4) $NH_4SCN \rightleftarrows CS(NH_2)_2$;
- 5) $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$;
- 6) $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$

	ОТОТИ	15 баллов
2	Уравнения реакций 1-6 по 1 баллу	6 баллов
1	при указании лишь брутто-формулы по 0.5 баллов	
1	Структурные формулы веществ А-И – по 1 баллу	9 баллов