ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ МАРИЙ ЭЛ «КОЛЛЕДЖ ИНДУСТРИИ И ПРЕДПРИНИМАТЕЛЬСТВА»

СОГЛАСОВАНО

Председатель ЦМК

В.В.Грачева

01сентября 2021г.

УТВЕРЖДАЮ

Заместитель директора по УР

Е.Д.Васюкова 01сентября 2021г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по выполнению практических работ по дисциплине ЕН.01 МАТЕМАТИКА

специальность 38.02.01 «Экономика и бухгалтерский учет (по отраслям)» по очной форме обучения

Методические указания по выполнению практических занятий по учебной дисциплине ЕН.01 Математика разработаны для студентов специальности 38.02.01 «Экономика и бухгалтерский учет (по отраслям)»

Разработчик: Грачева Валентина Вячеславовна, преподаватель физики и математики Государственного бюджетного профессионального образовательного учреждения Республики Марий Эл «Колледж индустрии и предпринимательства»

Рекомендована цикловой методической комиссией преподавателей ООД и дисциплин цикла ОГСЭ и ЕН Государственного бюджетного профессионального образовательного учреждения Республики Марий Эл «Колледж индустрии и предпринимательства

Пояснительная записка

Практические занятия служат связующим звеном между теорией и практикой. Они необходимы для закрепления теоретических знаний, полученных на уроках теоретического обучения, а так же для получения практических знаний. Практические задания выполняются студентом самостоятельно, с применением знаний и умений, полученных на уроках, а так же с использованием необходимых пояснений, полученных от преподавателя при выполнении практического задания. К практическому занятию от студента требуется предварительная подготовка, которую он должен провести перед занятием. Список литературы и вопросы, необходимые при подготовке, студент получает перед занятием из методических рекомендаций к практическому занятию.

Практические задания разработаны в соответствии с учебной программой. В зависимости от содержания они могут выполняться студентами индивидуально или фронтально.

Зачет по каждой практической работе студент получает после её выполнения и оформления отчета, а также ответов на вопросы преподавателя, если таковые возникнут при проверке выполненного задания.

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ РАБОТ

№ п/п	Тема практических занятий									
1.	Решение задач с комплексными числами. Геометрическая									
	интерпретациякомплексного числа									
2.	Действия над матрицами									
3.	Определители второго и третьего порядка									
4.	Метод Гаусса(метод исключения неизвестных)									
5.	Формулы Крамера (для систем линейных уравнений с тремя неизвестными)									
6.	Решение матричных уравнений									
7.	Графический метод решения задачи линейного программирования									
8.	Экстремум функции нескольких переменных									
9.	Нахождение переменного интеграла с помощью таблиц, а также используя его свойства									
10.	Методы замены переменной и интегрирования по частям									
11.	Интегрирование простейших рациональных дробей									
12.	Правила замены переменной и интегрирования по частям									
13.	Вычисление несобственных интегралов. Исследование сходимости									
	(расходимости) интегралов									
14.	Приложения интегрального исчисления									
15.	Дифференциальные уравнения первого порядка и первой степени									
16.	Уравнения с разделяющимися переменными									
17.	Однородное дифференциальное уравнение									

Практическое занятие № 1

Тема:Решение задач с комплексными числами. Геометрическая интерпретация комплексного числа

Цель занятия:1) Формирование общих и профессиональных компетенций:

Оснащение: методические указания по выполнению практического занятия.

- **Литература: 1.**Математика: учебник для прикладного бакалавриата / Н.В. Богомолов, П.И. Самойленко. 5-е изд., перераб. и доп. М.: Издательство Юрайт, 2017. 396с..
 - 2. Практические занятия по математике: учеб. пособие для бакалавров / Н.В. Богомолов.
 - 11-е изд., перераб. и доп. M.: Издательство Юрайт, 2017. 495c.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития
- ОК 5. Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.
- ОК 8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- 2) Развивать и закреплять знания учащихся производить различные арифметические действия с комплексными числами в различной форме.

Теоретическая часть:

Комплексное число – это выражение вида

$$z = x + iy, (1.1)$$

где x, y — вещественные числа, а $i^2=-1$ — мнимая единица. Первое из вещественных чисел, x, называется вещественной (действительной) частью комплексного числа (используется обозначение $x={\rm Re}\,z$); второе, y, - мнимой частью ($y={\rm Im}\,z$). Выражение (1.1) называют алгебраической формой записи комплексного числа.

$$i^1 = i$$

$$i^2 = -1$$

$$i^3 = i^2 \cdot i = -1 \cdot i = -i$$

$$i^4 = i^2 \cdot i^2 = -1 \cdot (-1) = 1$$

Числом, сопряженным к z=x+iy, называют число вида z=x-iy. Используя формулу разности квадратов, получаем, что $z=x^2+y^2$.

Пример 1. Решить уравнение $x^2 - 6x + 18 = 0$.

Решение. Дискриминант данного уравнения: $D = (-6)^2 - 4 \cdot 1 \cdot 18 = 36 - 72 = -36$ меньше нуля, но теперь мы можем воспользоваться мнимой единицей:

$$x_{1,2} = \frac{6 \pm \sqrt{-36}}{2} = \frac{6 \pm \sqrt{36} \cdot \sqrt{-1}}{2} = \frac{6 \pm 6i}{2}$$
, T.e. $x_1 = 3 + 3i$; $x_2 = 3 - 3i$.

Справедливы следующие правила арифметических действий над комплексными числами $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$:

- 1) $z_1 \pm z_2 = (x_1 + iy_1) \pm (x_2 + iy_2) = (x_1 \pm x_2) + i(y_1 \pm y_2)$ (осуществляется сложение или вычитание алгебраических двучленов и приведение подобных);
- 2) $z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 y_1, y_2) + i(x_1y_2 + x_2y_1)$ (осуществляется перемножение алгебраических двучленов и приведение подобных с учетом того, что $i^2 = -1$);

3)
$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)} = \frac{(x_1x_2+y_1y_2)+i(x_2y_1-x_1y_2)}{x_2^2+y_2^2}$$
 (эта операция

возможна только в случае, когда $z_2 \neq 0 + i0 = 0$).

Пример 2. Вычислить $z = \frac{2-7i}{3+4i}$ и указать вещественную и мнимую части полученного комплексного числа.

Решение. Действуя в соответствии с правилами получаем:

$$z = \frac{2-7i}{3+4i} = \frac{\left(2-7i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)} = \frac{6-8i-21i+28i^2}{9-16i^2} = \frac{6-29i-28}{9+16} = \frac{-22-29i}{25} = -\frac{22}{25} - \frac{29}{25}i \; ;$$
 поэтому Re $z = -\frac{22}{25}$, Im $z = -\frac{29}{25}$.

Тригонометрическая форма комплексного числа. Каждому комплексному числу вида (1.1) можно поставить в соответствие точку M(x;y) на декартовой плоскости (при этом на оси OX располагаются вещественные числа z = x + i0 = x, а на оси OY – чисто мнимые числа z = 0 + iy = iy). Модулем комплексного числа назовем длину отрезка $|\mathit{OM}|$ (или

расстояние от начала координат до точки M), т.е. $|z| = \sqrt{x^2 + y^2}$. Аргументом комплексного числа ($\phi = \text{Arg}z$) назовем угол, который вектор *OM* положительным направлением оси ОХ. Главное значение аргумента, которое, как правило, используется при осуществлении действий с комплексными числами, удовлетворяет условию $0 \le \varphi < 2\pi$. При этом выражение вида

$$z = |z| (\cos \varphi + i \sin \varphi)$$
 (1.2)

называется тригонометрической формой записи комплексного числа.

Содержание практической работы

Задание 1. Найдите z_1+z_2 , z_1-z_2 , z_1-z_2 , z_1-z_2 , если

1)
$$z_1 = 5 - 2i$$
 $z_2 = -4 + i$ 2) $z_1 = -3 + i$

1)
$$z_1 = 5 - 2i$$
 $z_2 = -4 + i$ 2) $z_1 = -3 + I$ $z_2 = 2 - 2i$
3) $z_1 = 1 - 5i$ $z_2 = -2 + i$ 4) $z_1 = -4 + 2i$ $z_2 = 1 - 3i$
5) $z_1 = 5 - 3i$ $z_2 = -4 + 2i$ 6) $z_1 = -1 + 4i$ $z_2 = 2 - i$

5)
$$z_1 = 5 - 3i$$
 $z_2 = -4 + 2i$ 6) $z_1 = -1 + 4i$ $z_2 = 2 - i$

Задание 2. Найдите $z^4; \sqrt[3]{z}$; если

1)
$$z = -1 + \sqrt{3} \cdot i$$
 2) $z = 2 - 2i$ 3) $z = -2 + 2\sqrt{3} \cdot i$ 4) $z = 1 - \sqrt{3} \cdot i$

5)
$$z = 2 - 2\sqrt{3} \bullet i$$
 6) $z = -2 + 2i$

Задание 3. Представьте в алгебраической форме комплексные числа:

1) a)
$$z = \sqrt{2} (\cos \frac{\pi}{3} + i \cdot \sin \frac{\pi}{3})$$
 6) $z = 2 \cdot e^{\pi/2}$

2) a)
$$z = \sqrt{3} (\cos \frac{\pi}{6} + i \cdot \sin \frac{\pi}{6})$$
 6) $z = 3 \cdot e^{-\pi \cdot 1}$

3) a)
$$z = 2 \cdot \cos(\frac{\pi}{4} - i \cdot \sin\frac{\pi}{4})$$
 6) $z = 5 \cdot e^{\pi/3}$

4) a)
$$z = 8 \cdot \cos(2\frac{\pi}{3} + i \cdot \sin 2\frac{\pi}{3})$$
 6) $z = 2 \cdot e^{-n/6}$

5) a)
$$z = 2 \cdot \cos(3\frac{\pi}{4} + i \cdot \sin 3\frac{\pi}{4})$$
 6) $z = 4 \cdot e^{-n \cdot 3i}$

6) a)
$$z = 3(\cos 3\frac{\pi}{2} - i \cdot \sin 3\frac{\pi}{2})$$
 6) $z = 6 \cdot e^{\pi/4 \cdot i}$

Практическое занятие № 2

Тема: Действия над матрицами.

Цель занятия: Развивать и закрепить практические навыки учащихся по вычислению действий над матрицами и вычислению определителей

Оснащение: методические указания по выполнению практического занятия.

Литература: 1.Математика: учебник для прикладного бакалавриата / Н.В. Богомолов, П.И. Самойленко. - 5-е изд., перераб. и доп. – М.: Издательство Юрайт, 2017. – 396с..

2. Практические занятия по математике: учеб. пособие для бакалавров / Н.В. Богомолов.

11-е изд., перераб. и доп. – М.: Издательство Юрайт, 2017. – 495с.

Содержание теоретической части.

Определение 1. Матрицей размера 2 x 2 называется совокупность чисел, расположенных в виде таблицы из 2 строк и 2 столбцов. Обозначается

Числа, составляющие
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 эту матрицу, называются ее элементами

и обозначаются буквой с двумя индексами. Первый индекс указывает номер строки, а второй - номер столбца, в которых стоит данное число.

Определение 2. *Определителем (или детерминантом) второго порядка,* соответствующим данной матрице, называется число $a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$.

Определитель обозначают символом

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

По определению,
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}.$$

Числа a_{11} , a_{12} , a_{21} , a_{22} называются элементами определителя.

Определение 3. Аналогично, если

$$A = egin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 - квадратная матрица размера 3 х 3

(3 строки, 3 столбца), то соответствующим ей определителем третьего порядка называется число, которое вычисляется следующим образом

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Примеры. 1.Вычислить определители второго порядка:

1)
$$\Delta = \begin{vmatrix} -\kappa_1 & 2 + \kappa_2 \\ \kappa_1 \cdot \kappa_2 & 5 \end{vmatrix}$$
, $2\Delta = \begin{vmatrix} \frac{\kappa_1}{3} & 5^2 \\ 3 \cdot \kappa_2 & 6 \end{vmatrix}$, $3\Delta = \begin{vmatrix} 9^{0.5} & \kappa_1 \cdot 64^{\frac{1}{6}} \\ (0.5)^{-3} & \sqrt{4^2} \end{vmatrix}$

2.Вычислить определители третьего порядка:

$$1) \Delta = \begin{vmatrix} -1 & 3\kappa_1 & 2 \\ 2 & 8 & \kappa_2 \\ 1 & 1 & 2 \end{vmatrix}, \quad 2) \Delta = \begin{vmatrix} 3\kappa_2 & 4 & -5 \\ 8 & 7\kappa_2 - 2 & -2 \\ 2 & -1 & 8 \end{vmatrix}, \quad 3) \Delta = \begin{vmatrix} 1 & -2 & \kappa_1 \cdot \kappa_2 \\ 3 & \kappa_1 & -5 \\ 2 & \kappa_2 & 5 \end{vmatrix}$$

Содержание практической работы.

Зад 1. Вычислить определитель А:

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

- 1) Разложением по элементам третьей строки;
- 2) Разложить по элементам первого столбца.

Таблица 1

Вариант	a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}
1	1	-2	3	4	2	-3	5	2	1
2	2	-1	2	-3	4	-1	2	3	-2
3	3	1	-2	-4	1	-3	5	1	2
4	5	1	-1	-2	0	4	2	1	2
5	4	-1	1	1	2	1	-2	0	2
6	-2	1	-1	3	2	-1	2	0	1

Зад 2. Найти произведение матриц АхВ:

$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}; B = \begin{pmatrix} m_1 & n_1 \\ m_2 & n_2 \\ m_3 & n_3 \end{pmatrix}$$

Таблица 2

Вариант	a_1	b_1	c_1	a_2	b_2	c_2	m_1	n_1	m_2	n_2	m_3	n_3
1	5	4	-2	-3	1	-4	2	-6	1	0	5	-2
2	2	-2	1	4	-2	5	0	6	3	-2	-4	1
3	4	-2	3	0	1	-3	4	-5	2	1	3	-2
4	2	-1	4	2	0	5	-4	3	-2	4	2	1
5	-3	1	2	-4	2	0	-1	3	2	-2	1	-1
6	-2	1	2	3	-1	3	-2	0	1	-1	3	2

Зад 3. Найти матрицу обратной матрице А

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Данные смотрите в таблице 1.

Контрольные вопросы

- 1. Дать определение матрицы
- 2. Понятие квадратной и единичной матрицы
- 3. Правило сложения и умножения матриц
- 4. Алгоритм нахождения обратно матрицы
- 5. Вычисление определителя разложением по строке и по столбцу