Центр цифрового образования детей «IT-куб» на базе государственного бюджетногообщеобразовательного учреждения Республики Марий Эл «Политехнический лицей-интернат»

ПРИНЯТО на заседании педсовета Протокол от «29» августа 2022 г. № 1

УТВЕРЖДАЮ Директор ГБОУ Республики Марий Эл «Политехнический лицей-интернат» Н.П. Стадникова

Дополнительная общеобразовательная общеразвивающая программа *«Программирование роботов»*

Направленность программы: техническая

Уровень программы: стартовый (ознакомительный)

Возраст учащихся: 7-12 лет

Срок освоения программы: 1 год

Объем часов: 34

ФИО, должность разработчиков программы:

Крылова Татьяна Ивановна, руководитель ЦЦОД «ІТ-Куб», Кожанова Анна Михайловна, методист ЦЦОД «ІТ-Куб»

Пояснительная записка

Робототехника является одним из важнейших направлений научно - технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта.

За последние годы успехи в робототехнике и автоматизированных системах изменили личную и деловую сферы нашей жизни. Роботы широко используются в транспорте, в исследованиях Земли и космоса, в хирургии, в военной промышленности, при проведении лабораторных исследований, в сфере безопасности, в массовом производстве промышленных товаров и товаров народного потребления. Многие устройства, принимающие решения на основе полученных от сенсоров данных, тоже можно считать роботами — таковы, например, лифты, без которых уже немыслима наша жизнь.

Робототехника — это самые высокие современные технологии, где переплетаются: механика, электроника и программирование в одну единую конструкцию. Чтобы построить робота, необходимы навыки и знания, в различных науках. Таких как: физика механика, математика, логика, информатика, развитие которых надо начинать с детства.

Данная общеразвивающая программа по робототехнике — это один из интереснейших способов изучения компьютерных технологий и программирования. Обучающиеся научатся проектировать, создавать и программировать роботов. Практические задания помогут глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно познать алгоритмизацию и программирование.

Направленность программы

Программа имеет техническую направленность. Программирование роботов становится одним из самым популярных инженерных проектов в школьной робототехнике. Именно с таких устройств, автономных или управляемых со смартфона и bluetooth, начинается путь в робототехнику ≪после Lego». Таким образом, применение робототехники базе микропроцессоров Arduino, различных электронных компонентов (датчиков и модулей расширения) в учебном процессе формирует инженерный подход к решению задач, дает возможность развития творческого мышления у детей, привлекает школьников к исследованиям в межпредметных областях, а также позволит им овладеть soft и hard компетенциями, а также реализовать социальный заказ общества на технически грамотных специалистов в области робототехники.

Новизна программы

Курс носит междисциплинарный характер и позволяет решить задачи развития у учащихся научно-исследовательских, проектных, технико-технологических и гуманитарных компетенций. В ходе освоения программы, учащиеся получат навыки исследовательской и проектной деятельности, смогут реализовать воплощение авторского замысла в автоматизированные модели и проекты особенно важно для учащихся, у которых наиболее выражена исследовательская (творческая) деятельность. Инновационную направленность программы обеспечивает соединение проектной и практико-ориентированной деятельности учащихся с нацеленностью на результат и использование современных технологий.

Актуальность программы

Программа строится на концепции подготовки учащихся к инженерным специальностям. Актуальность программы обусловлена необходимостью вернуть интерес детей и подростков к научно-техническому творчеству, так как в России наблюдается острая нехватка инженерных кадров, развитие робототехники обусловлено постоянно растущим спросом на специалистов в изучаемой сфере, а так же в множестве различных сферах с технической направленностью; полученные на занятиях знания становятся для учащихся необходимой теоретической и практической основой их дальнейшего участия в техническом творчестве и выборе будущей профессии. При реализации программы «Программирование роботов» созданы условия для

саморазвития личности, отвечающей запросам современного общества и экономического развития региона, обеспечения нового качества профильного образования.

Педагогическая целесообразность

Педагогическая целесообразность программы заключается в том, что она направлена на формирование трудовых навыков и их постепенное совершенствование; создание благоприятных психолого-педагогических условий для полноценного развития личностного потенциала; снятие комплекса нерешительности, развитие чувства самоорганизации, твердости духа, чувства взаимовыручки, взаимопонимания, социальной защищенности; поддержку и развитие одарённых детей; выработку умения решать творческие, конструктивные и технологические задачи. Обучение происходит особенно успешно, когда обучающийся вовлечен в процесс создания значимого и осмысленного продукта, который представляет для него интерес. Важно, что при этом обучающийся сам строит свои знания, а педагог лишь консультирует его.

Программа обеспечивает индивидуальный объем и темп усвоения учебного материала, а в целом реализует личностно — ориентированную модель образования и технологию развивающего обучения, которая позволяет обеспечить оптимальные условия для самореализации личности обучающегося в этом возрасте.

В настоящее время, благодаря научно-технической революции, обучающиеся имеют достаточно информации о том, как сделать первые шаги в робототехнике, а также о последних достижениях в робототехнике. Поэтому программа предусматривает возможность обучения с запасом знаний и умений разного уровня.

Отличительные особенности

Отличительные особенности данной программы заключаются в том, что программа предусматривает обучение на практике с применением знаний, полученных в общеобразовательной школе.

Форма обучения— очная, с возможностью применения дистанционных технологий.

Срок реализации и объем программы определяется содержанием программы и составляет 1 год (34 академических часа).

Режим занятий: Занятия проводятся 1 раз в неделю по 1 часу.

Количество обучающихся в группе - 10 человек.

Программа разработана в соответствии со следующими нормативными документами:

- 1. Конституция Российской Федерации (принята всенародным голосованием 12.12.1993 с изменениями, одобренными в ходе общероссийского голосования 01.07.2020) URL: http://www.consultant.ru/document/cons_doc_LAW_28399/ (дата обращения: 10.03.2021).
- 2. Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 31.07.2020) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 01.09.2020) URL: http://www.consultant.ru/document/cons_doc_LAW_140174 (дата обращения: 28.09.2020).
- 3. Паспорт национального проекта «Образование» (утв. президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 № 16) URL: //https://login.consultant.ru link ?req=doc&base=LAW-&n=319308&demo=1 (дата обращения: 10.03.2021).
- 4. Государственная программа Российской Федерации «Развитие образования» (Утверждена Постановлением Правительства РФ от 26.12.2017 № 1642 (ред. от 22.02.2021)
- «Об утверждении государственной программы Российской Федерации «Развитие образования» URL: http://www.consultant.ru document cons_doc_LAW_286474 (дата обращения: 10.03.2021).
- 5. Стратегия развития воспитания в Российской Федерации на период до 2025 года (Утверждена распоряжением Правительства РФ от 29.05.2015 № 996-р «Об утверждении Стратегии развития воспитания в Российской Федерации на период до 2025 года») URL:

http://www.consultant.ru/document/cons_doc_LAW_180402/ - (дата обращения: 10.03.2021).

- 6. Профессиональный стандарт «Педагог (педагогическая деятельность в дошкольном, начальном общем, основном общем, среднем общем образовании), (воспитатель, учитель)» (ред. от 16.06.2019 г.) (Приказ Министерства труда и социальной защиты РФ от 18 октября 2013 г. № 544н, с изменениями, внесенными приказом Министерства труда и соцзащиты РФ от 25 декабря 2014 г. № 1115н и от 5 августа 2016 г. № 422н) URL://http://профстандартпедагога.рф (дата обращения: 10.03.2021).
- 7. Профессиональный стандарт «Педагог дополнительного образования детей и взрослых» (Приказ Министерства труда и социальной защиты РФ от 5 мая 2018 г. № 298н «Об утверждении профессионального стандарта «Педагог дополнительного образования детей и взрослых») URL: //https://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/reestr-professionalnykh-tandartov/index.php?ELEMENT_ID=48583 (дата обращения: 10.03.2021).
- 8. Федеральный государственный образовательный стандарт основного общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897) (ред. 21.12.2020) URL: https://fgos.ru (дата обращения: 10.03.2021).
- 9. Федеральный государственный образовательный стандарт среднего общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413) (ред. 11.12.2020) URL: https://fgos.ru (дата обращения:10.03.2021).
- 10. Федеральный государственный образовательный стандарт начального общего образования (Утверждён приказом Минобрнауки России от 26.11.2010 № 1241, от 22.09.2011 № 2357) URL: https://fgos.ru (дата обращения: 10.03.2021).
- 11. Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № P-4). URL: http://www.consultant.ru/document/cons_doc_LAW_374695/ (дата обращения: 10.03.2021).
- 12. Методические рекомендации по созданию и функционированию центров цифрового образования «IT-Куб» (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № Р-5). URL: http://www.consultant.ru/document/cons_doc_LAW_374572/ (дата обращения: 10.03.2021).

Основные понятия и термины

Алгоритм — это конечное точное предписание действий, которые необходимо выполнить для решения поставленной задачи.

Исполнитель алгоритма — это некоторый объект (техническое устройство, робот, автомат), способный выполнять определённый набор команд алгоритма. Робот — это исполнитель алгоритма, сформулированного на одном из языков программирования. **Среда Scratch** — это среда программирования в виде графических блоков, описывающих команды исполнителю алгоритма.

Трансмиссия — это группа команд среды Scratch, задающих различные виды движений исполнителя алгоритма.

Датчик — это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Датчики, выполненные на основе электронной техники, называются электронными датчиками. Отдельно взятый датчик может быть предназначен для измерения (контроля) и преобразования одной физической величины или одновременно нескольких физических величин.

Переменная (в императивном программировании) — это поименованная либо адресуемая иным способом область памяти, адрес которой можно использовать для осуществления доступа к данным. В таких языках переменная определяется как имя, с которым может быть связано значение, или даже как место (location) для хранения значения.

Игровое поле — это заранее сконфигурированная площадка с заданиями для робота. **Консоль экрана** — это специальное окно для вывода значений и сообщений в ходе выполнения роботом заданий на игровом поле.

Цель и задачи программы

Целью программы является создание необходимых условий для личностного развития обучающихся, их социализации и профессиональной ориентации средствами технического творчества через формирование знаний, умений и навыков в процессе создания робототехнических систем.

Задачи:

Обучающие:

- познакомить обучающихся со спецификой работы над различными видами моделей роботов;
- научить различным технологиям создания роботов, механизмов;
- научить составлять программы для роботов различной сложности;
- развить у обучающихся инженерное мышление;
- развить способность работы с информацией.

Метапредместные (развивающие):

- развивать личностные качества (активность, инициативность, волю, любознательность.);
- развивать внимание, память, восприятие, образное мышление;
- развивать логическое и пространственное воображение;
- развивать творческие способности и фантазию;
- развивать мотивацию обучающихся к познанию и творчеству;
- формировать положительные черты характера: трудолюбие, аккуратность, собранность, усидчивость, отзывчивость;
- развивать навыки анализа и оценки получаемой информации;
- развивать у обучающихся мотивацию к самоопределению;
- развивать мотивацию к профессиональному самоопределению обучающихся.

Личностные (воспитательные):

- воспитывать навыки самоорганизации;
- воспитывать навыки сотрудничества: работа в коллективе, в команде, микро-группе;
- воспитывать бережное отношение к технике, терпение в работе;
- воспитывать аккуратность, стремление доводить работу до конца;
- воспитывать самостоятельность, инициативу, творческую активность.

Предметные результаты

Модуль 1. Знакомство с платформой VEXcode VR

В результате изучения данного модуля учащиеся должны:

знать: названия различных компонентов робота и платформы: контроллер (специализированный микрокомпьютер); исполнительные устройства — мотор, колёса, перо, электромагнит; датчики цвета, расстояния, местоположения, касания; панель управления, ракурсы наблюдения робота; программные блоки по разделам; виды игровых полей (площадок); кнопки управления;

уметь: программировать управление роботом; использовать датчики для организации обратной связи и управления роботом; сохранять и загружать проект.

Модуль 2. Программирование робота на платформе

В результате изучения данного модуля учащиеся должны:

з**нать:** математические и логические операторы; блоки вывода информации в окно вывода;

уметь: применять на практике логические и математические операции; использовать блоки для работы с окном вывода; составлять с помощью блоков математические выражения.

Модуль 3. Датчики и обратная связь

В результате изучения данного модуля учащиеся должны:

знать: принципы работы датчиков; блоки управления датчиками; возможности датчиков:

уметь: использовать циклы и ветвления для реализации системы принятия решений; решать задачу «Лабиринт».

Модуль 4. Реализация алгоритмов движения робота

В результате изучения данного модуля учащиеся должны:

знать: условный оператор if/else; цикл while; понятие шага цикла;

уметь: применять на практике циклы и ветвления; использовать циклы и ветвления для решения математических задач; использовать циклы для объезда повторяющихся траекторий.

Модуль 5. Творческий проект

При выполнении творческих проектных заданий учащиеся будут разрабатывать свои собственные программы. Проектные занятия могут проводиться учителем начальных классов, учителем технологии или учителем информатики.

Перечень используемого оборудования и материалов: рабочее место для работы с компьютером; компьютер с ОС Windows и выходом в Интернет; рабочая тетрадь ученика.

Модуль 6. Дальнейшее развитие

При выполнении задач учащиеся будут разрабатывать свои собственные программы. Проектные занятия могут проводиться учителем начальных классов, учителем технологии или учителем информатики.

Перечень используемого оборудования и материалов: рабочее место для работы с компьютером; компьютер с ОС Windows и выходом в Интернет; рабочая тетрадь ученика.

Тематическое планирование

№ п/п	Тема	Содержание	Целевая установка урока	Кол-во часов	Основные виды деятельности обучающихся на уроке/внеурочном занятии	Использование оборудования
1	Знаком- ство с платформой VEXcode VR	Основные фрагменты интерфейса платформы. Панель управления, блоки программы, датчики, игровая площадка, экран датчиков и переменных, кнопки управления. Создание простейших программ (скриптов), сохранение и загрузка проекта	Ознакомление обучающихся с интерфейсом платформы, принципами програм мирования виртуального робота, видами игровых полей (площадок), основными блоками управления		Наблюдение за работой учителя, совместное с учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контроль- ные вопросы	Виртуальная среда VEXcode VR
2	Про- граммировани е робота на плат- форме	Математические и логи- ческие операторы, блоки вывода информации в окно вывода, блоки трансмиссии. Блоки управления, блоки переменных, блоки датчиков, блоки вида, магнит	Ознакомление обучающихся с блоками логических и математических операто ров, приёмы работы с ними. Организация движения робота с помощью блоков трансмиссии. Применение блоков переменных. Изучение основных видов датчиков. Применение магнита		Наблюдение за работой учителя, совместное с учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы	Виртуальная среда VEXcode VR
3	Модуль 3. Датчики и обратная связь	Датчик местоположения, направления движения. Датчики цвета. Дисковый лабиринт. Датчик расстояния. Простой лабиринт. Динамический лабиринт. Управление магнитом. Сбор фишек	Ознакомление обучающихся с основными видами датчиков и принципами их ра боты. Применение датчиков в различных игровых полях. Создание скриптов для про-		Наблюдение за работой учителя, совместное с учителя программирование скриптов, самостоятельная работа с инструментами среды, ответы на контроль- ные вопросы	Виртуальная среда VEXcode VR

			хождения простого и дина мического лабиринтов. Разработка программы сбора фишек с помощью магнита и размещение их по цветам			
4	Модуль 4. Реализация алгоритмов движения робота □	Блок команд «Управление» и организация циклов и ветвлений. Проекты «Разрушение замка» и «Динамическое разрушение замка». Проект «Детектор линии»	Подробный разбор блока команд «Управление» и создание скриптов для реализации различных проектов игровых полей	10	Наблюдение за работой учителя, совместное с учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы	Виртуальная среда VEXcode VR
	Модуль 5. Творче- ский проект	Создание собственного проекта с использованием максимально возможного количества датчиков	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект	4	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы	Виртуальная среда VEXcode VR
	Модуль 6. Даль- нейшее развитие	Основы программирования роботов на языке Си. Простейшие программы для роботов	Используя полученные знания, обучающиеся знакомятся с принципами программирования роботов в текстовом редакторе RobotC на языке программирования Си	3	Наблюдение за работой учителя, совместное с учителя программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы	Виртуальная среда VEXcode VR
	ИТОГО			34		

Формы аттестации обучающихся

Для отслеживания результативности на протяжении всего процесса обучения осуществляются:

Входной контроль: собеседование с обучающимися.

Текущий контроль: проходит в течение всего учебного года с целью выявления прочности полученных знаний на различных этапах прохождения материала. Результаты работы учитель определяет по активности обучающихся при ответах на вопросы викторин, при общении с обучающимися и их родителями.

Промежуточная аттестация: проводится после изучения крупных разделов с целью выявления уровня знаний и умений обучающихся по изученным темам и откорректировать ошибки и пробелы в знаниях.

Итоговый контроль: проводится с целью подведения итога работы за год и перспективы на будущее. По окончанию учебного года проводится диагностика образовательных достижений, где определяется уровень освоения данной программы (низкий, средний, высокий). Форма проведения: защита проекта.

Проект является одним из видов самостоятельной работы, предусмотренной в ходе обучения по программе. Педагог-наставник оказывает консультационную помощь в выполнении проекта.

Индивидуальный (групповой) проект оценивается формируемой комиссией. Состав комиссии (не менее 3-х человек): педагог-наставник, администрация учебной организации, приветствуется привлечение ІТ-профессионалов, представителей высших и других учебных заведений.

Компонентами оценки индивидуального (группового) проекта являются (по мере убывания значимости): качество индивидуального проекта, отзыв руководителя проекта, уровень презентации и защиты проекта. Если проект выполнен группой обучающихся, то при оценивании учитывается не только уровень исполнения проекта в целом, но и личный вклад каждого из авторов. Решение принимается коллегиально.

Оценочные и методические материалы

В программу входят разнообразные оценочные материалы, в зависимости от темы занятия. (Приложение)

Организация образовательного процесса в данной программе происходит в очной форме обучения, с возможностью применения дистанционных технологий, и групповой форме.

При реализации программы используются различные методы обучения:

- объяснительно-иллюстративный (предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др.);
- проблемный (постановка проблемы и самостоятельный поиск её решения обучающимися);
- репродуктивный (воспроизводство знаний и способов деятельности по аналогу);
- поисковый (самостоятельное решение проблем);
- метод проблемного изложения (постановка проблемы педагогам, решение ее самим педагогом, соучастие обучающихся при решении);
- метод проектов (технология организации образовательных ситуаций, в которых обучающийся ставит и решает собственные задачи).

Для оценки результативности обучения и воспитания регулярно используются разнообразные методы: наблюдение за деятельностью; метод экспертной оценки преподавателем, мотивация, убеждение, поощрение, упражнение, стимулирование, создание

ситуации успеха. Данные методы используются при анализе деятельности обучающихся, при организации текущей, промежуточной и итоговой аттестации обучающихся.

Перечисленные выше методы обучения используются в комплексе, в зависимости от поставленных целей и задач.

Список литературы

- 1. Автоматизированные устройства. ПервоРобот. Книга для учителя. LEGOGroup, перевод ИНТ, 2012. 134с.
- 2. Барсуков А. Кто есть кто в робототехнике. М., 2005. 125 с.курс / Под ред. Н.В. Макаровой. СПб.: Питер, 2000.
 - 3. Леонтьев В.П. Новейшая энциклопедия ПК. М., ОЛСМ-ПРЕСС, 2003.
- 4. Макаров И.М., Толчеев Ю.И. Робототехника. История и перспективы. М., 2003. 349с.
- 5. Макарова Н.В. Информатика, 5-6-е классы. Начальный курс (2-е издание). СПб.: Питер, 2003.
 - 6. Наука. Энциклопедия. М., «РОСМЕН», 2000. 125с. 27
- 7. Образовательная робототехника «Обзор решений 2014 года». Компания ITS технический партнер программы поддержки молодых программистов и молодежных IT-проектов. ITS-robot, 2014.
- 8. Попов Е.П., Письменный Г.В. Основы робототехники: Введение в специальность: Учеб. Для вузов по спец. «Робототехнические системы и комплексы» М.: высш. Шк., 2004. -224 с., ил.
- 9. Рыкова Е.А. Lego-Лаборатория (LegoControlLab). Учебнометодическое пособие. СПб, 2000. 59 с.

Примерная тематика проектов для разработки

- 1. Робот в жизни человека
- 2.Робот исследователь
- 3. Человекоподобный робот
- 4. Шагающий робот
- 5.Робот эколог
- 6.Робот спасатель
- 7.Робот шахматист
- 8.Робот художник
- 9.Робот принтер
- 10. Лимоноид робот, подающий напитки
- 11.Робот пожарный
- 12.Робот сортировщик
- 13.Робот погрузчик
- 14.Робот экскурсовод
- 15.Робот щенок
- 16.Робот кормушка
- 17.Робот часы
- 18.Робот газонокосилка
- 19.Робот трансформер
- 20. Танцующийробот
- 21.Гоночныйробот
- 22.Робот Марсоход
- 23. Автономный робот, объезжающий препятствия
- 24. Робот, который едет по черной линии
- 25.Робо-рука

Уровни освоения материала

низкий (стартовый) уровень—не демонстрирует знание терминологии и теоретических фактов или демонстрирует знание теории, но не применяет эти знания в практической деятельности

средний (базовый) уровень-демонстрирует знание терминологии и теоретических фактов, применяет эти знания в практической деятельности

высокий (продвинутый) уровень-демонстрирует знание терминологии и теоретических фактов, применяет эти знания в практическойдеятельности, в незнакомых условиях

Контрольно-оценочный материал к дополнительной общеобразовательной программе:

Вопросы для собеседования, семинара (беседы, опроса, анкетирования)
Раздел/тема программы
Цель опроса
Возраст обучающихся
Вопросы
1
2

Уровни освоения материала

низкий (стартовый) уровень—не демонстрирует знание терминологии и теоретических фактов или демонстрирует знание теории, но не применяет эти знания в практической деятельности

средний (базовый) уровень-демонстрирует знание терминологии и теоретических фактов, применяет эти знания в практической деятельности

высокий (продвинутый) уровень-демонстрирует знание терминологии и теоретических фактов, применяет эти знания в практическойдеятельности, в незнакомых условиях