Введение в теорию графов

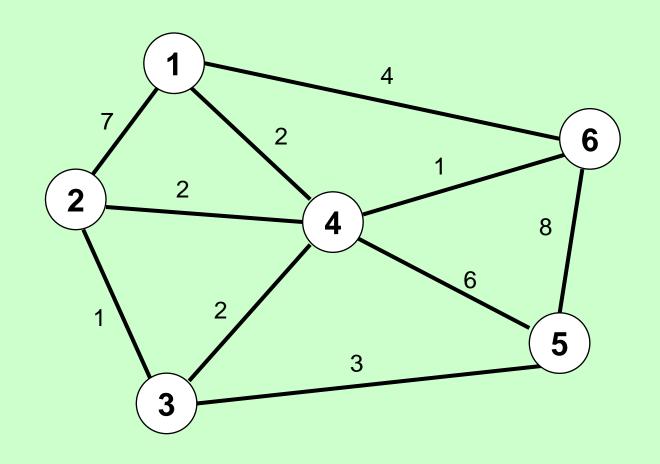
Урок информатики в 11 классе

ДЛЯ ЧЕГО ИСПОЛЬЗУЮТ ТЕОРИЮ ГРАФОВ

При проектировании компьютерных сетей, телефонных линий, трубопроводов, при строительстве дорог и пр. необходимо минимизировать затраты на прокладку коммуникаций.

Использование графа в этих случаях позволяет найти минимальный по длине маршрут прокладки коммуникаций

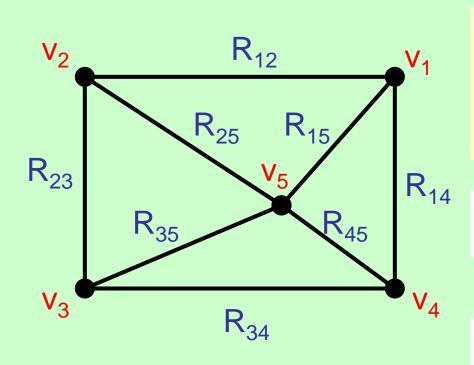
ЗАДАЧА ПРОКЛАДКИ КОММУНИКАЦИЙ



ПРИМЕР.

Необходимо соединить кабелем шесть зданий. Требуется определить маршрут прокладки кабеля минимальной длины.

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ГРАФОВ



Граф G в форме схемы

Граф G задается с помощью пары множеств **G = (V, R)**, где V – множество **вершин**, R – множество **ребер**, соединяющих

R – множество **ребер**, соединяющих пары вершин.

Вершины называются смежными, если их соединяет ребро.

Вершины V_1 и V_2 смежны.

Количество вершин и количество ребер графа определяют **мощности множеств** V и R.

Количество вершин графа G равно 5, а количество ребер равно 8.

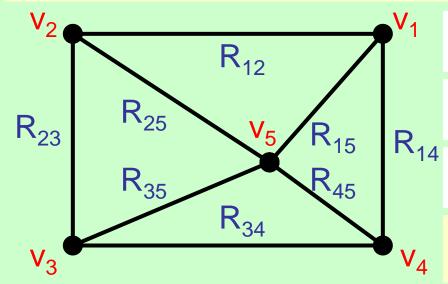
Ребро и любая из его двух вершин называются инцидентными.

Под степенью вершины подразумевается количество инцидентных ей ребер.

Степень вершины V₁ равна 3, а степень вершины V₅ равна 4...

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ГРАФОВ

Маршрут графа – это последовательность чередующихся вершин и ребер



Маршрут является замкнутым (циклом) если его начальная и конечная вершины совпадают.

Маршрут называется **простой цепью**, если все его вершины и ребра различны.

Одна вершина достижима из другой, если между ними проложен маршрут.

Граф считается **связным**, если каждая его вершина достижима из любой другой.

Вершины, которые не имеют инцидентных ребер, называются изолированными вершинами.

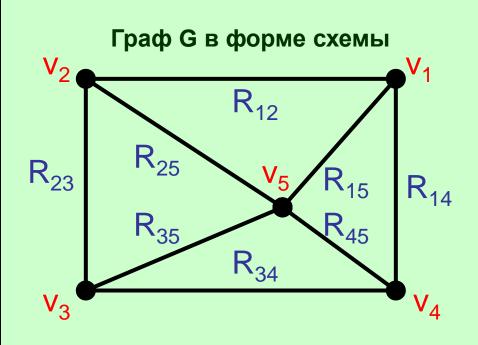
В ориентированном графе (орграфе) каждое ребро (дуга) имеет одно направление.

Входящая и **исходящая степени вершины** — это соответственно число входящих в вершину дуг и исходящих из нее дуг

Взвешенный граф (сеть) — это такой граф, ребрам или дугам которого поставлены в соответствие числовые величины.

Вес сети равен сумме весов ее ребер

ОПИСАНИЕ ГРАФА С ПОМОЩЬЮ МАТРИЦЫ СМЕЖНОСТИ



Для наглядного представления используют **схемы**.

Для математических расчетов удобнее использовать представление графа в форме матрицы смежности.

Элемент матрицы смежности равен 1, если вершины смежны, и 0, если вершины не смежны.

Диагональные элементы равны 0, так как вершины сами с собой не смежны.

Граф и сеть G в форме матрицы смежности

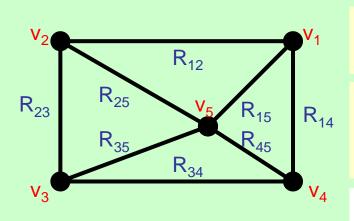
a)

	1	2	3	4	5
1	0	1	0	1	1
2	1	0	1	0	1
3	0	1	0	1	1
4	1	0	1	0	1
5	1	1	1	1	0

б)

	1	2	3	4	5
1	0	50	0	25	10
2	50	0	25	0	30
3	0	25	0	50	35
4	25	0	50	0	15
5	10	30	35	15	0

ПОДГРАФЫ И ДЕРЕВЬЯ

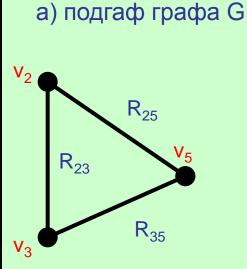


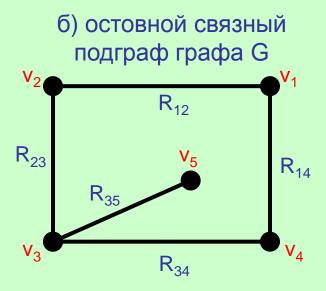
Подграфом графа G называется граф, у которого все вершины и ребра принадлежат графу G.

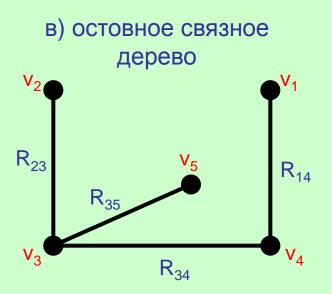
Остовной связный подграф – это подграф графа G, который содержит все его вершины и каждая его вершина достижима из любой другой.

Дерево – это граф, в котором нет циклов.

Остовным связным деревом называется подграф, включающий все вершины исходного графа G, каждая вершина которого достижима из любой другой, и при этом не содержит циклов.







Граф С в форме схемы



Матрица смежности связного взвешенного неориентированного графа G

	1	2	3	4	5
1	0	50	0	25	10
2	50	0	25	0	30
3	0	25	0	50	35
4	25	0	50	0	15
5	10	30	35	15	0

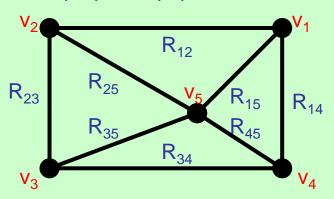
Цикломатическое число γ показывает, сколько ребер графа нужно удалить, чтобы в нем не осталось ни одного цикла.

Цикломатическое число γ равно увеличенной на единицу разности между количеством ребер и количеством вершин: $\gamma = m-n+1$

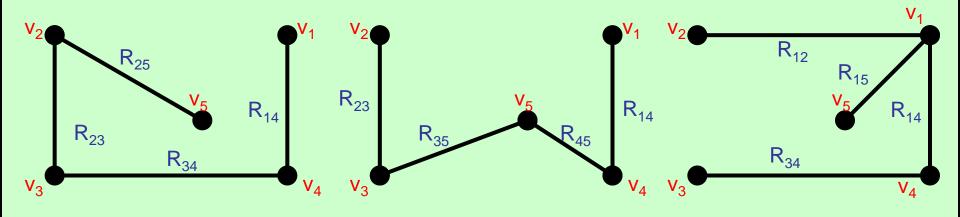
Для графа G: $\gamma = m - n + 1 = 8 - 5 + 1 = 4$

Для каждого графа обычно существует несколько остовных связных деревьев, которые обладают различными весами.

Граф G в форме схемы



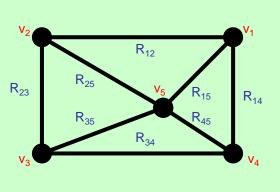
Остовные связные деревья графа G

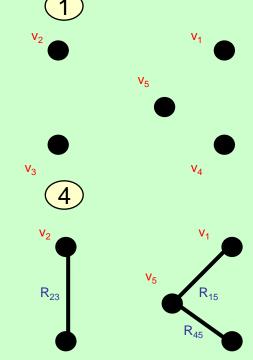


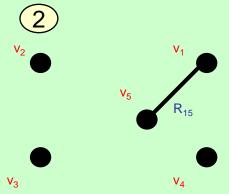
Для построения остовного связного дерева минимального веса используется алгоритм Крускала.

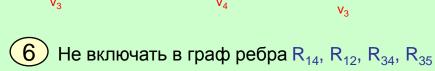
- Из графа удаляются все ребра, получается остовной подграф, где все вершины изолированы. Каждая вершина такого графа помещается в одноэлементное подмножество.
- Ребра сортируются по возрастанию весов.
- Ребра последовательно, по возрастанию их весов, включаются в остовное дерево. Существуют четыре случая:

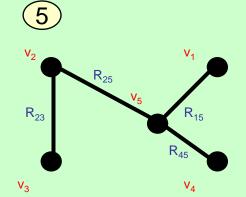
 а) обе вершины включенного ребра принадлежат одноэлементным подмножествам, тогда они объединяются в новое, связное подмножество; б) одна из вершин принадлежит связному подмножеству, а другая нет, тогда включаем вторую в подмножество, которому принадлежит первая; в) обе вершины принадлежат разным связным подмножествам, тогда объединяем подмножества; г) обе вершины принадлежат одному связному подмножеству, тогда исключаем данное ребро.
- Алгоритм заканчивает свою работу, когда все вершины будут объединены в одно множество, при этом оставшиеся ребра не включаются в остовное дерево.











- 7 Получено остовное (включены все вершины) связное (все вершины можно соединить маршрутами) дерево (отсутствуют циклы) минимального веса (последовательно включались ребра, отсортированные по возрастанию весов)
- 8 Минимальный вес дерева: $R_{23}+R_{25}+R_{15}+R_{45}=25+30+10+15=80$
- 9 Циклографическое число графа G равно γ =m-n+1=8-5+1=4, что соответствует количеству ребер, не включенных в остовное связное дерево