АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

МОУ «Средняя общеобразовательная школа №3 п.Советский»

ФИЗИКА

7-9 класс (основное общее образование)

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части основного общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики в основной школе следующие:

- усвоение обучащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;
- организация экологического мышления и ценностного отношения к природе;
- развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Достижение целей обеспечивается решением следующих задач:

• знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Сведения о программе курса:

Рабочая программа курса по физике составлена на основе федерального компонента государственного стандарта основного общего образования.

Рабочая программа курса конкретизирует содержание предметных тем образовательного стандарта, дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Рабочая программа курса разработана на основе авторской программы Л.Э.Генденштейн, В.И.Зинковский. Физика. 7-11 классы. - М.: Мнемозина, 2010 год.

Учебно-методический комплекс:

УМК «Физика. 7 класс»

- 1. Физика 7 класс.: учеб. для общеобразоват. организаций (в 2-х частях) / Л.Э. Генденштейн, А.Б. Кайдалов. 8-е изд., испр. М.: Мнемозина, 2014. 272 с.
- 2. Физика. 7 класс: рабочая тетрадь к учебнику А.В. Перышкина. / Т. А. Ханнанова, Н. К. Ханнанов.-3-е изд., стериотип.-М.:Дрофа, 2014.-108с.
- 3. Физика. Тесты. 7 класс / Н. К. Ханнанов, Т. А. Ханнанова. М.: Дрофа, 2013. 112с.
- 4. Физика. 7 класс .: учебно-методическое пособие / А. Е. Марон, Е. А. Марон. 11-е изд.. стериотип.-М : Дрофа,2013.-123с.
- 5. Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).
- 6. Электронное приложение к учебнику.

УМК «Физика. 8 класс»

- 1. Физика 8 класс. : учеб. для общеобразоват. организаций (в 2-х частях) / Л.Э. Генденштейн, А.Б. Кайдалов. 8-е изд., испр. М.: Мнемозина, 2014. 272 с.
- 2. Физика. Тесты. 8 класс / Н. К. Ханнанов, Т. А. Ханнанова. М.: Дрофа, 2013. 112с.
- 3. Физика. 8 класс .: учебно-методическое пособие / А. Е. Марон, Е. А. Марон.- 10-е изд.. стериотип.-М : Дрофа,2012.-125с.
- 4. Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

6. Электронное приложение к учебнику.

УМК «Физика. 9 класс»

1. Физика 9 класс: учеб. для общеобразоват. организаций (в 2-х частях) / Л.Э. Генденштейн, А.Б. Кайдалов. - 8-е изд., испр. - М.: Мнемозина, 2014. - 319 с.

- 2. Физика. Тесты. 9 класс / Н. К. Ханнанов, Т. А. Ханнанова. М.: Дрофа, 2009. 111 с.
- 3. Физика. 9класс .: учебно-методическое пособие / А. Е. Марон, Е. А. Марон. 8-е изд.. дороб.-М : Дрофа,2010.-127с.

Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

Информация о количестве учебных часов: 68 часов в каждом классе (2 часа в неделю)

Ведущие формы и методы, технологии обучения:

<u>Формы организации учебных занятий:</u> изучение нового материала; семинарские занятия; обобщения и систематизации; контрольные мероприятия.

<u>Используемы методы обучения</u> (по И. Я. Лернеру): объяснительно-иллюстративный; проблемное изложение, эвристический, исследовательский.

<u>Используемые педагогические технологии:</u> информационно-коммуникационные; компетентностный подход к обучению (авторы: Хуторский А.В., Зимняя И.А.), дифференцированное обучение (автор: Гузеев В.В).

Механизмы формирования ключевых компетенций учащихся:

Оптимальным путем развития ключевых компетенций учащихся является стимулирующий процесс решения задач при инициативе учащегося. Решение задач является одним из важных факторов, развивающим мышление человека, которое главным образом формируется в процессе постановки и решении задач. В процессе решения качественных и расчетных задач по физике учащиеся приобретают «универсальные знания, умения, навыки, а также опыт самостоятельной деятельности и личной ответственности», что соответствует определению понятия ключевых компетенций.

Поле решаемых задач – Система задач - удовлетворяет внутренним потребностям учащихся; выводит знания, умения и навыки всех учеников на стандарт образования (программа минимум); активизирует творческие способности, нацеливает на интеграцию знаний, полученных в процессе изучения различных наук, ведет к ориентировке на глобальные признаки, (последнее утверждение относится к учащимся, работающим над задачами продвинутого уровня); практико-ориентирована, содержит современные задачи, отражающие уровень развития техники, нацеливает на последующую профессиональную деятельность, что особенно актуально для выпускников.

В информационной структуре поля учебных задач, заключены соответствующие виды знаний и умений, детерминирующие такие виды учебно-познавательной деятельности, как познавательная, практическая, оценочная, учебная. Решение задач является эффективным способом реализации компетентностного подхода к обучению.

Результаты освоения учебного предмета

Личностными результатами обучения по физике в основной школе является

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

• формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметными результатами обучения физике основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы,

- отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Используемые формы, способы и средства проверки и оценки результатов обучения по данной рабочей программе:

Формы контроля: самостоятельная работа, контрольная работа; тестирование; лабораторная работа; фронтальный опрос; физический диктант; домашний лабораторный практикум.

10 - 11 класс (среднее общее образование)

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики

- освоение знаний о тепловых, электромагнитных и квантовых явлениях, величинах, характеризующих эти явления, законах, которым они подчиняются, о методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения интеллектуальных проблем, физических задач и выполнения экспе-

риментальных исследований; способности к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;

- **воспитание** убежденности в познаваемости окружающего мира, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности.

Сведения о программе:

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта основного общего образования.

Изучаемый материал разбит на тематические блоки (модули). В рамках модуля учащиеся могут выбирать различные учебные траектории, но сроки окончания модуля строго ограничены контрольным мероприятием. Количество часов на изучение отдельных тем не изменено, структурный порядок изучения тем сохранен, расширение содержания учебного материала происходит в процессе решения специально подобранных разноуровневых задач (Система задач).

Курс физики 10 класса включает 4 раздела: «Механика», «Молекулярная физика. Термодинамика», «Электродинамика». Курс физики 11 класса включает 5 разделов: «Электродинамика», «Колебания и волны», «Оптика», «Квантовая физика», «Элементы астрофизики».

Данная структура курса имеет следующие особенности:

- теория относительности изучается сразу после механики и до электродинамики и оптики, что позволяет показать место механики в современной физической картине мира и с самого начала изучения курса следовать идее единства классической и современной физики;
- далее следует большой раздел о строении и свойствах вещества, в котором вслед за классическими представлениями молекулярной физики, включающей молекулярно-кинетическую теорию и термодинамику, рассматриваются квантовые идеи физики атома, атомного ядра и элементарных частиц.

Рабочая программа курса разработана на основе авторской программы Л.А.Кирик. Л.Э.Генденштейн, Ю.И.Дик, (из сборника "Программы ДЛЯ общеобразовательных учреждений 7 – 11 кл." М., Дрофа 2008 год) базовый уровень.

Учебно-методический комплекс:

Основная литература:

- 1. Генденштейн Л. Э., Дик Ю. И. «Физика. 10 класс». Учебник. М: Мнемозина, 2008.
- 2. Генденштейн Л. Э., Дик Ю. И. «Физика. 11 класс». Учебник. М: Мнемозина, 2009.
- 3. Л.Э. Генденштейн, Л.А. Кирик, И.М. Гельфгат. Задачник для общеобразовательных учреждений. Физика. 10 класс. М.: Мнемозина, 2008.
- 4. Л.Э. Генденштейн, Л.А. Кирик, И.М. Гельфгат. Задачник для общеобразовательных учреждений. Физика. 10 класс. М.: Мнемозина, 2009.

Информация о количестве учебных часов: $10 \, \text{класс} - 35 \, \text{часов} \, (1 \, \text{час в неделю}); \, 11 \, \text{класс} - 35 \, \text{часов} \, (базовый уровень стандарта 1 час в неделю) и <math>140 \, \text{часов} \, (\text{профильный уровень стандарта 4 часа в неделю})$

Ведущие формы и методы, технологии обучения:

Формы организации учебных занятий: изучение нового материала; семинарские

занятия; обобщения и систематизации; контрольные мероприятия.

<u>Используемы методы обучения</u> (по И. Я. Лернеру): объяснительно-иллюстративный; проблемное изложение, эвристический, исследовательский.

<u>Используемые педагогические технологии:</u> информационно-коммуникационные; компетентностный подход к обучению (авторы: Хуторский А.В., Зимняя И.А.), дифференцированное обучение (автор: Гузеев В.В).

Механизмы формирования ключевых компетенций учащихся:

Оптимальным путем развития ключевых компетенций учащихся является стимулирующий процесс решения задач при инициативе учащегося. Решение задач является одним из важных факторов, развивающим мышление человека, которое главным образом формируется в процессе постановки и решении задач. В процессе решения качественных и расчетных задач по физике учащиеся приобретают «универсальные знания, умения, навыки, а также опыт самостоятельной деятельности и личной ответственности», что соответствует определению понятия ключевых компетенций.

Поле решаемых задач — Система задач - удовлетворяет внутренним потребностям учащихся; выводит знания, умения и навыки всех учеников на стандарт образования (программа минимум); активизирует творческие способности, нацеливает на интеграцию знаний, полученных в процессе изучения различных наук, ведет к ориентировке на глобальные признаки, (последнее утверждение относится к учащимся, работающим над задачами продвинутого уровня); практико-ориентирована, содержит современные задачи, отражающие уровень развития техники, нацеливает на последующую профессиональную деятельность, что особенно актуально для выпускников.

В информационной структуре поля учебных задач, заключены соответствующие виды знаний и умений, детерминирующие такие виды учебно-познавательной деятельности, как познавательная, практическая, оценочная, учебная. Решение задач является эффективным способом реализации компетентностного подхода к обучению.

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

- использование для познания окружающего мира различных естественнонаучных методов: наблюдения, измерения, эксперимента, моделирования;
- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач:
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

- владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

- владение навыками контроля и оценки своей деятельности, умение предвидеть возможные результаты своих действий;
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Используемые формы, способы и средства проверки и оценки результатов обучения по данной рабочей программе:

Формы контроля: самостоятельная работа, контрольная работа; тестирование; лабораторная работа; фронтальный опрос; физический диктант; домашний лабораторный практикум.

Требования к уровню подготовки выпускников

В результате изучения физики на базовом уровне ученик должен знать/понимать:

- **смысл понятий:** физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших значительное влияние на развитие физики; уметь
- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитная индукция, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперименты являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций; квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
 - о обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

- о оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- о рационального природопользования и защиты окружающей среды.