Муниципальный этап всероссийской олимпиады школьников по физике 2021-2022 учебный год

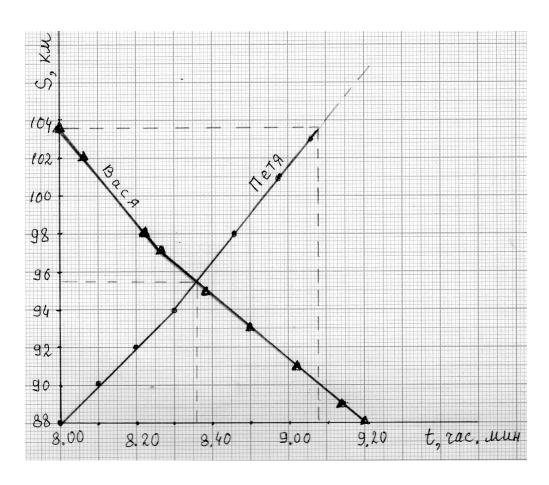
Критерии оценивания

8 класс

Задача 1. «Велопробег восьмиклассников» (10 баллов). Между поселками Солнечный и Речной вдоль шоссе проложили велодорожку. Петя живет в поселке Солнечный, а Вася в поселке Речной. Друзья решили устроить велопробег и договорились стартовать ровно в 8.00 часов каждый из своего поселка навстречу друг другу. Проезжая километровые столбы, они иногда отмечали время. Петя часть пути проехал с небольшой скоростью, а потом увеличил скорость. Вася же начал велогонку с большой скоростью, но быстро устал и поехал медленнее. На всех участках своего пути ребята двигались равномерно. Графики движения Пети и Васи представлены в таблицах.

Таблица 1. График движения Пети

Километровый столб	Поселок Солнечный 88	90	92	94	98	101
Показание часов (час:мин:сек)	08:00:00	08:10:00	08:20:00	08:30:00	08:46:00	08:58:00
Километровый столб	103	Поселок Речной				
Показание часов (час:мин:сек)	09:06:00	09:08:00				


Таблица 2. График движения Васи

Километровый столб	Поселок Речной	102	98	97	95	91	89
Показание часов (час:мин:сек)	08:00:00	08:06:00	08:22:00	08:26:00	08:38:00	09:02:00	09:14:00
Километровый	Поселок						
столб	Солнечный						
Показание часов (час:мин:сек)	09:20:00						

Определите: 1) расстояние между поселками, 2) скорости движения Пети и Васи на различных участках, 3) в какое время они встретились, 4) на каком расстоянии от поселка Солнечный произошла встреча. 5) Постройте графики их движения (лучше это делать на мм-бумаге).

Решение.

Графический способ. Используя таблицу или построив графики движения, можно найти расстояние между поселками: S=103.5-88=15.5 км. Скорости можно найти из таблиц или графиков: $v_{\Pi 1}=1/5$ км/мин = 12 км/ч ; $v_{\Pi 2}=1/4$ км/мин = 15 км/ч ; $v_{B1}=1/4$ км/мин = 15 км/ч ; $v_{B2}=1/6$ км/мин = 10 км/ч. Время встречи по графику приблизительно 8:35; расстояние от поселка Солнечный до места встречи приблизительно 7.4 км.

Критерии оценивания (10 баллов).

- 1) Расстояние между поселками 2 балл.
- 2) Скорости движения Пети и Васи 2 балла.
- 3) Время встречи 2 балл.
- 4) Расстояние до места встречи от поселка Солнечный 2 балл.
- 5) Построены графики движения 2 балла.

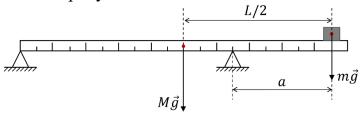
Задача 2. «Таяние льда» (10 баллов). Коля решил ускорить процесс таяния кусочка льда, для этого он положили его в сосуд с отверстием у дна. Сосуд Коля поставил в раковину и открыл кран, направив небольшую струю воды на лед. Температура льда $T_0 = 0$ °C, температура воды $T_1 = 20$ °C. Расход воды из крана q = 1 г/с. Найти расход воды, вытекающей из сосуда, если ее температура T = 3 °C. Теплообменом с окружающим воздухом и с сосудом можно пренебречь. Удельная теплоемкость воды c = 4.2 Дж/ $(r \cdot °C)$, удельная теплота плавления льда $\lambda = 340$ Дж/г. За счет наличия отверстия у дна сосуда вода в нем не накапливается.

Решение.

За время Δt в сосуд втекает $\Delta m = q \Delta t$ воды. Она плавит лед и нагревает образовавшуюся воду. Втекающая вода отдает количество тепла $Q_1 = cq \Delta t (T_1 - T)$. При плавлении льда и нагревании образовавшейся воды поглощается количество теплоты $Q_2 = \lambda \Delta m_1 + c \Delta m_1 (T - T_0)$. Таким образом, масса растаявшего льда: $\Delta m_1 = \frac{cq \Delta t (T_1 - T)}{\lambda + c (T - T_0)}$. Из сосуда за время Δt вытекает вода, которая втекла из крана, и вода, образовавшаяся из растаявшего льда. Расход вытекающей воды:

$$q_1 = \frac{\Delta m + \Delta m_1}{\Delta t} = q \cdot \left(1 + \frac{T_1 - T}{T - T_0 + \frac{\lambda}{c}}\right) \approx 1.2 \text{ r/c}.$$

Критерии оценивания (10 баллов).


- 1) Записано выражение для отданного количества теплоты 3 балла.
- 2) Записано выражение для поглощенного количества теплоты 2 балла.
- 3) Составлено уравнение теплового баланса и найдена масса растаявшего льда -2 балла.
 - 4) Получен выражение для расхода вытекающей воды 2 балла.
 - 5) Получено числовое значение расхода вытекающей воды 1 балл.

Задача 3. «Равновесие» (10 баллов). Линейка массой M=60 г и длиной L=30 см лежит на двух опорах (см. рис.). На свободный конец линейки помещают груз m. При каком максимальном значении массы этого груза возможно равновесие в представленной системе? Расстояние от ближайшей опоры до груза a=5 см.

Решение.

Предельное условие равновесия будет соответствовать ситуации, когда линейка перестает давить на левую опору. Силы, действующие на линейку с грузом в таком случаи показаны на рисунке.

Как можно видеть, условием равновесия линейки будет равенство моментов по отношению к правой опоре: $mga = Mg \cdot (\frac{L}{2} - a)$. Откуда получаем максимальное значение для массы груза m: $m = M \cdot \frac{L-2a}{2a} = 120$ г. Таким образом, масса груза mдолжна удовлетворять условию: $m \le 120$ г.

Критерии оценивания (10 баллов).

- Указано условие предельного равновесия отсутствие силы давления на крайнюю левую опору – 1 балл.
- Выполнен рисунок для предельного случая с указание действующих в системе сил и их плечами – 3 балла.
- Записано условие равновесия линейки в предельном случае через равенство моментов сил – 3 балла.
 - Получено выражение для максимальной массы груза 2 балла.
 - Получено условие, которому должна удовлетворят масса груза 1 балл. 5)

Задача 4. «Погружение льдины» (10 баллов). В воде плавает льдина с площадью поперечного сечения $S=5~{\rm M}^2$ и толщиной $H=0.5~{\rm M}$. Какую работу надо совершить, чтобы полностью погрузить льдину в воду? Плотность льда 900 кг/м3. Плотность воды $1000 \,\mathrm{kr/m^3}$.

Решение.

Определим сначала, на сколько необходимо погрузить льдину. Высота h_0 выступающей над водой части льдины определяется из условия равновесия: $F_{\rm A} =$ mg. Сила Архимеда: $F_{\rm A}=
ho_1gS\cdot(H-h_0)$; масса льдины: $m=
ho_2gSH$; ho_1 и ho_2 плотность воды и льда соответственно. В итоге получаем $h_0 = H \cdot (\rho_1 - \rho_2)/\rho_1$.

В начальный момент силы $F_{\rm A}$ и mg уравновешивают друг друга. По мере уменьшения высоты h выступающей над водой части льдины от h_0 до 0 необходимо прикладывать сверху вниз все большую силу F. Ее значение меняется линейно от 0до максимального значения $F_{max} = gSH \cdot (
ho_1 -
ho_2)$. При этом работу A , совершаемую при погружении, льдины можно определить по среднему значению силы F: $F_{\rm cp}=F_{max}/2=gSH(\rho_1-\rho_2)/2$. Работа, соответствующая средней силе $F_{\rm cp}$: $A=F_{\rm cp}\cdot h_0=gSH\cdot \frac{(\rho_1-\rho_1)}{2}\cdot \frac{H(\rho_1-\rho_2)}{\rho_1}=gSH^2\cdot \frac{(\rho_1-\rho_1)^2}{2\rho_1}=62.5~{\rm Дж}.$

$$A = F_{cp} \cdot h_0 = gSH \cdot \frac{(\rho_1 - \rho_1)}{2} \cdot \frac{H(\rho_1 - \rho_2)}{\rho_1} = gSH^2 \cdot \frac{(\rho_1 - \rho_1)^2}{2\rho_1} = 62.5 \text{ Дж.}$$

Критерии оценивания (10 баллов).

- Определены равновесная (минимальная), максимальная и средняя сила Архимеда – 3 балла.
- Определена работа через среднюю силу и высоту выступающей части льдины – 3 балла.
 - Определена высота выступающей части льдины 1 балл. 3)
 - Выведена формула для работы 2 балла. 4)
 - Получено числовое значение для работы 1 балл. 5)